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SUMMARY

The numerical solutions of inviscid rotational (Euler) flows were obtained using an explicit hexahedral
unstructured cell vertex finite volume method. A second-order-accurate, one-step Lax–Wendroff scheme
was used to solve the unsteady governing equations discretized in conservative form. The transonic
circular bump, in which the location and the strength of the captured shock are well predicted, was used
as the first test case. The nozzle guide vanes of the VKI low-speed turbine facility were used to validate
the Euler code in highly 3D environment. Despite the high turning and the secondary flows which
develop, close agreements have been obtained with experimental and numerical results associated with
these test cases. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

At present, several three-dimensional numerical methods can model the flow in turbomachines.
An assessment of the 3D internal inviscid codes has been presented by Povinelli [1]. In this
paper emphasis has been given to the calculation of secondary flows which develop when
initially viscous velocity profiles flow through ducts and blade passages with high turning.
Although the geometries treated in these test cases are relatively simple, the high turning
coupled with non-uniform inlet conditions create complex flow structures within the computa-
tional domain. In the presence of streamwise and normal vorticity components, the flow is
highly three-dimensional. The secondary flows result mainly from the motion and the
distortion of existing inlet endwall boundary layer. Such mechanisms have been extensively
discussed by Sieverding [2]. Since such flows are vorticity dominated, inviscid rotational Euler
solvers can successfully predict the flow structure.

To show the versatility and robustness of the presently developed Euler code, test cases
involving different internal flow geometries with a wide range of inlet Mach number have been
chosen. First, the transonic circular bump problem is solved. At an inlet Mach number of
0.675, the present code successfully places the shock at 72% of the cord. With this test case, the
ability of the algorithm to accurately calculate the shock strength and location is illustrated.
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The other test case which reports the 3D flow results of the nozzle guide vane of the VKI
is also well documented [3–5]. This test case has already been investigated by several
researchers [6–8]. Comparison with experiments and other calculations illustrate the capabili-
ties of the present code. As an example, close agreement with the experiment has been obtained
in the pitch averaged, tangential flow angles at several axial locations. Therefore, even though
comparison between measured and calculated secondary flows in bends and turbine cascades
have already been published by other authors, this paper will report numerical results obtained
using a second-order-accurate finite volume cell vertex Lax–Wendroff scheme. The present cell
vertex scheme uses a directionally independent cell based flux computation technique which is
given in the paper. Furthermore, since the Lax–Wendroff scheme is second-order-accurate in
time, the distribution of the property changes are modified by higher order terms and the
nodes receive an additional corrected flux change. The code has already been validated against
2D subsonic, transonic and supersonic test cases [9,10].

Figure 1. (a) The cells around node 1; (b) the control volume around node 1; (c) one of the cells bounding node 1.
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Figure 2. Surface grid of the bump.

Figure 3. Mach contours on the y=constant planes.

2. GOVERNING EQUATIONS

The system of time-dependent three-dimensional Euler equations are written in integral form
using a stationary Cartesian co-ordinate system as:
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Figure 4. Mach number distribution.

Figure 5. Convergence history.
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Figure 6. Blade-to-blade geometry at mid-blade hide.

Figure 7. Surface grid with measurement planes.
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3. DISCRETIZATION OF GOVERNING EQUATIONS

A second-order-accurate one-step Lax–Wendroff type integration scheme due to Ni [11] has
been employed to discretize the Euler equations. The solution at any grid point m, at time level
n+1, can be expressed in terms of the solution at time level n using a Taylor series expansion.
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From Equations (1) and (5):
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Integration of Equation (1) using Equation (6) and divergence theorem gives:
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Figure 8. Upstream total pressure loss distribution [4].
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Figure 9. Downstream radial static pressure distribution [4].

Figure 1(a) shows eight cells around node 1. Figure 1(b) depicts the control volume around
node number 1. Figure 1(c) shows one of the cell bounding node 1 and 1/8 of the control
volume.

The first integral in Equation (8) is evaluated around the cell in Figure 1(c) as follows:
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Here i represents the face number of the cell, S is the surface vector, and from Equation (1),
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F, G and H in Equation (9) are calculated on the faces of the cell by averaging the flow
properties of four nodes defining the considered face. Expressions for S vectors are given in
Appendix C.

Control volumes are created by dividing each cell (12345678), into eight small hexahedrons
(1abcdefg in Figure 1(c)). This division is carried out by connecting the mid-points of edges,
face centroids and centroid of the cell. The second integral in Equation (8) is taken around the
control volume (owuskhez in Figure 1(b)) which encloses the considered node point&&
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where si represents the surface area vector related to the control volume. It is approximated as
1/4 of the respective cell face.
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DF, DG and DH in Equation (12) are given in Appendix B.
Thus, Q vector at the node number m, at time step n+1 is calculated as:
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A comprehensive description of the method is given by Oktay [9,10].

Figure 10. Cp distributions at various sections.
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Figure 11. Contour plots of static pressure at various planes.
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4. BOUNDARY CONDITIONS

At the inlet, total temperature T0ref is specified as constant. The non-uniform inlet condition is
obtained by supplying P0/P0ref as imposed by the inlet boundary layer. For irrotational flow,
P0/P0ref is taken as uniform at the inlet. Flow angles b and g are specified as zero. For all the
test cases in this paper, b and g are taken as zero. For subsonic flows, the inlet conditions are
found by extrapolating the upstream running Riemann invariant. All other upstream variables
are calculated using Equation (14), the isentropic relations and the specified total pressure
variation.

V=
(k−1)R− +
2(1−k)(R−)2+4(k+1)CpT0ref

(k+1)
. (14)

For subsonic outflow, the exit static pressure is specified and other variables are taken from
the computational domain. For annular geometries, the hub pressure is specified and the radial
pressure distribution is calculated by integrating the axisymmetric radial momentum equation.
At solid wall boundaries, the tangency condition is used. Pressure and density are calculated
from the inner nodes using the method of characteristics. Solutions at nodes on the periodic
boundaries are treated as if they were internal nodes, specifying the addresses of cells which are
in flux interrelation.

Figure 11 (Continued)
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Figure 12. Contour plot of total pressure loss x/cAx=0.86.

5. NUMERICAL SMOOTHING

Although numerical smoothing is an unavoidable requirement for time marching Euler solvers
to stabilize the solution for transonic and supersonic flows, it is also needed in the case of
subsonic problems which contain grid non-uniformities.

In this work, a numerical smoothing model is used by adding a smoothing term into the
right-hand-side of Equation (13):

Q smt
n =0.125m(Qc

n−Qm
n ), (15)

where Q smt
n is the smoothing operator and Qc

nis the average of Q at surrounding nodes of the
cell. Successive application of the smoothing operator results in second-order smoothing.
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Here, Six, Siy and Siz are surfaces of the local co-ordinate system which pass through the cell
center. Subscripts x, y and z represent projected areas of these surfaces in the respective
directions. In this paper, s is taken as 0.07 for transonic cases and 0.001 for low subsonic
cases.

6. LOCAL TIME STEPPING

Local time stepping accelerates convergence to steady state by advancing the solution at each
cell in time at a CFL number near the stability limit. The time step is calculated from:

Dt=CFL×DV×min(Sixu+Siy6+Sizw+a
Six
2 +Siy

2 +Siz
2 ), i=1, 3. (17)
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7. RESULTS AND DISCUSSION OF THE TEST CASES

7.1. Transonic circular bump

The channel geometry is constructed of a 10% thick circular arc bump at the bottom of the
flow domain with the other sides being planer. The 3D 65×9×17 (streamwise×pitchwise×
spanwise) algebraic grid is generated by stacking the 2D grid on the xz co-ordinate plane
through the spanwise y-direction (Figure 2). This grid is generated by stretching through the
streamwise and spanwise directions.

The problem is initiated from a uniform flow. At the inlet, total temperature, total pressure
and flow angles (a=0.0, b=0.0) are specified. At the exit, static pressure corresponding to
Mach number=0.675 is specified.

The location of the shock at 72% of the chord from the leading edge (Figure 3 and Figure
4) and the strength of the shock are in very close agreement with the original solution of Ni
[11]. A sharp shock is obtained without any over or undershoots. Three and a half orders of
convergency is achieved within 2000 iterations (Figure 5)

7.2. The nozzle guide 6anes of the VKI low-speed turbine

7.2.1. Description of the problem. The test case is a low speed (Vinlet=12.5 m s−1), low
aspect ratio (height/chord=0.6), high turning (65° from axial direction) annular nozzle guide
vane [3,5]. The investigated guide vane has a uniform profile over the spanwise direction and
is untwisted (Figure 6). Although the geometry is relatively simple, the two-dimensional inlet
flow with collateral inlet endwall boundary layer develop into a full three-dimensional flow
within the blade passage. There are two main reasons for this: first, the existence of the inlet
vortices pointing toward the blade to blade direction; and second, the highly uneven blade

Figure 13. Secondary velocities at various measurement planes.
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loading due to high turning in the circumferential direction in an annular blade passage.
Hence, two vortical mechanisms can be discerned:

– Two horse-shoe vortices hanging at the leading edge of the blades at the hub and tip and
the stretching in the streamwise direction along the blade suction and pressure sides.

– The development of two counter rotating passage vortices, also caused by the radially
non-uniform inlet flow condition and enhanced by 3D blade loading. The inlet total
pressure endwall boundary layer was specified over 21 points in the radial (spanwise)
direction.

An algebraic 66×21×31 (streamwise×pitchwise×spanwise) grid was generated using
IDEAS™. This grid is presented in Figure 7.

7.2.2. Inlet and exit boundary conditions. At the inlet, the flow is purely axial (b=0 and
g=0). A constant total temperature T0 distribution and a spanwise endwall total pressure
profile is determined from the pressure loss distribution given by Boletis (Figure 8) which is
uniform in the pitchwise direction. At the exit plane, the static pressure is fixed at the hub. The
value of the hub pressure corresponds to an isentropic outlet Mach number of 0.3. This Mach
number, higher than the experimental value by one order, was chosen to enhance convergence
as suggested by Arts [6] and Novak et al. [8]. The spanwise distribution of the pitchwise
averaged static pressure coefficient at the exit is obtained using the radial momentum equation.
Figure 9 shows this static pressure distribution and the corresponding experimental results [4].
Three and a half orders of convergency are reached after 8000 iterations for this test case.

7.2.3. Static pressure results. Variations of the static pressure coefficient on blade surfaces are
given in Figure 10(a)–(c). At the trailing edge of the blade profile, a non-physical over
expansion is observed. The flow model is inviscid and no viscous modeling has been carried

Figure 14. Contour plots of flow angle b at various measurement planes.
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out in this zone, therefore high values and oscillations are expected (Figure 10(a)–(c)). Static
pressure contours given at x/c=0.35, as shown in Figure 11(a) show that the variation is
mainly from pressure side to suction side and exhibit a typical 2D pitchwise pressure gradient.
Further downstream at x/c=0.86 (Figure 11(b)), high turning and secondary flow effects shift
the direction of the static pressure gradient. Just outside the blade passage x/c=1.11 (Figure
11(c)), the trailing edge of the blades is clearly marked with ‘V’-shaped contours. Close

Figure 14 (Continued)
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Figure 15. Contour plots of flow angle g at various measurement planes.

agreement with experimental test case results [4] and earlier numerical calculations [7] can be
observed.

7.2.4. Total pressure loss results. The total pressure loss coefficient has also been calculated
(Figure 12). Since the present solution is inviscid, the only physical loss is the one introduced
by the inlet total pressure profile. Thus, some differences are expected from the ‘viscous’
experimental results. The computational maximum total pressure loss is as high as 20% of the

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 907–926 (1998)
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experimental result. The main source of this discrepancy is due to discretization errors, grid
distortions at the leading and trailing edges and high turning. The test case was run twice with
uniform and non-uniform inlet profiles. Grid, numerical smoothing and exit boundary

Figure 16. Radial distribution of the pitchwise averaged b flow angle at various measurement planes.
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conditions were the same. By subtracting the total pressure of the irrotational results from the
rotational one, an attempt to remove the numerical uncertainty was made. The result obtained
using the techniques described above is in close agreement with experimental data [4].

7.2.5. Secondary 6elocities. On the blade suction side, both legs of horse-shoe vortices can be
distinguished (Figure 13(a)). The horse-shoe vortices interact with counter rotating passage
vortices at the downstream. Two of the vortex cores are located near the hub and cover slightly
less than the half span. The other two are located in the upper half of the blade passage. At
the pressure side, the horse-shoe vortex leg rotates in the same direction as the passage vortex
and therefore, both have coalesced (Figure 13(a) and (b)). These two separate, but interacting,
secondary flow mechanisms have also been the focus of different researchers: Boletis et al. [4]
investigated skewed inlet boundary layer type flow profiles through the VKI turbine nozzle,
while highly three-dimensional blade passage loading has been addressed by Arts [6], who
considered a tip endwall contoured VKI annular turbine nozzle guide vane.

7.2.6. Flow angle results. In the figures that follow, the flow angle b is taken to be indicated
as positive when pointing from pressure side to suction side. The radial flow angle g is positive
when pointing from hub to tip.

At x/c=0.35 (Figure 23(a)), the horse-shoe vortex influence on the blade passage flow
become noticeable. The downwash angle g at the pressure side hub endwall corner reaches
−4° and a corresponding upward motion is seen at the pressure side tip endwall reaching to
4°. Flow angle b variation also depends both on the incoming endwall boundary layers and on
the transverse pressure gradient across the blade passage. The computational and experimental
flow angle b contours are given in Figure 14(a) and (c). Flow angle b contours at x/c=0.35
(Figure 14(a)) show the clockwise rotating strong vortex at the blade suction side and at the
1/4 pitch of the blade passage endwall regions. The endwall flow angle b gradients are less
pronounced in the computational results (Figure 14(b)). Further downstream the computed
core flow has a uniform flow angle b of 68°, while in the experiment a non-uniform smaller
turning is observed (Figure 14(c)). As the flow proceeds further downstream, the radial flow
angle g variations near the hub strengthen (Figure 15(a) and (b)).

7.2.7. Spanwise distribution of the pitch a6erage flow angle results. The axial evolution of the
pitchwise averaged flow angle b is given in Figure 16(a)–(d). The characteristic over/under-
turning behavior of the flow under the influence of secondary flows has been successfully
captured. In Figure 16(a) and (c), larger differences between computational and experimental
pitchwise averaged flow angle b( profiles are observed. In the computation, the no-slip
boundary condition at the blade surface causes a high turning, while in the experiment the
viscous flow around the blade leading and trailing edges give a smaller turning angle. Closer
agreements are observed within the confined blade passages. Underturning and overturning
near the endwall are less pronounced in the calculation. This suggests the presence of other
vortical motion related to local viscosity and blade boundary layer. Overall, the pitch averaged
results produced in this work seem to be in good agreement with the experimental spanwise
pitch averaged flow angle b distribution [4,5].

8. CONCLUSION

An Euler solver for three-dimensional internal flow has been presented. A cell vertex finite
volume method has been applied to a highly bent duct and to an annular turbine blade passage

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 907–926 (1998)
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with high turning. It has been possible to calculate the development of the inviscid secondary
flow generated by the presence of an inlet total pressure gradient. The development of full
passage vortex and streamwise bending of horse-shoe vortices have been shown to lead to
secondary flows. Agreement has been obtained with the available experimental and computa-
tional data. It is concluded that the present code is capable of quantitatively reproducing the
physics of the complex vortex structures.
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APPENDIX A. NOMENCLATURE

a speed of sound (non-dimensionalized with the stagnation speed of sound)
c chord length
cAx axial cord length

static pressure coefficient.Cps

Cp0 total pressure coefficient.
e total energy per unit volume
F, G, H flux terms
h blade height

normal vectorn
p pressure
R radial direction
Q state vector

timet
u, 6, w Cartesian components of non-dimensional velocity vector non-dimensional-

ized with the stagnation speed of sound
V non-dimensional absolute velocity, V=
u2+62+w2

x, y, z Cartesian co-ordinates
b pitchwise flow angle

radial flow angleg

m numerical smoothing coefficient
s numerical smoothing parameter
u tangential direction
r density
V control volume
#V closed surface around control volume
Dt time step
DV volume of cell

Subscripts
c cell index
FS free stream
m node index
R radial direction
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components in co-ordinate directionsx, y, z
Y axial direction

static quantitys
0 total quantity
1 inlet

outlet2

Superscript
n time step index
– pitchwise average
= pitchwise and spanwise average

APPENDIX B. EXPRESSIONS FOR SURFACE AREA VECTORS OF FINITE
VOLUME CELLS

Sb 1=
1
2

(r� 1−r� 3)× (r� 4−r� 2)

Sb 2=
1
2

(r� 7−r� 5)× (r� 6−r� 8)

Sb 3=
1
2

(r� 4−r� 5)× (r� 1−r� 8)

Sb 4=
1
2

(r� 7−r� 2)× (r� 6−r� 3)

Sb 5=
1
2

(r� 2−r� 5)× (r� 6−r� 1)

Sb 6=
1
2

(r� 3−r� 8)× (r� 7−r� 4)

All these vectors point outwards (Figure 1).

APPENDIX C. EXPRESSIONS FOR DF, DG, DH
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rDu=D(ru)−u(Dr) rD6=D(r6)−6(Dr) rDw=D(rw)−w(Dr)

h0= (e+p)/r rDh0=De+Dp−h0Dr
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